On oriented graphs whose skew spectral radii do not exceed 2
نویسندگان
چکیده
منابع مشابه
Ordering the oriented unicyclic graphs whose skew-spectral radius is bounded by 2
*Correspondence: [email protected] 2School of Science, Zhejiang A&F University, Hangzhou, 311300, China Full list of author information is available at the end of the article Abstract Let S(G ) be the skew-adjacency matrix of an oriented graph G with n vertices, and let λ1,λ2, . . . ,λn be all eigenvalues of S(G ). The skew-spectral radius ρs(G ) of G is defined as max{|λ1|, |λ2|, . . . , |λn|}....
متن کاملNew skew equienergetic oriented graphs
Let $S(G^{sigma})$ be the skew-adjacency matrix of the oriented graph $G^{sigma}$, which is obtained from a simple undirected graph $G$ by assigning an orientation $sigma$ to each of its edges. The skew energy of an oriented graph $G^{sigma}$ is defined as the sum of absolute values of all eigenvalues of $S(G^{sigma})$. Two oriented graphs are said to be skew equienergetic iftheir skew energies...
متن کاملon the skew spectral moments of graphs
let $g$ be a simple graph, and $g^{sigma}$ be an oriented graph of $g$ with the orientation $sigma$ and skew-adjacency matrix $s(g^{sigma})$. the $k-$th skew spectral moment of $g^{sigma}$, denoted by $t_k(g^{sigma})$, is defined as $sum_{i=1}^{n}( lambda_{i})^{k}$, where $lambda_{1}, lambda_{2},cdots, lambda_{n}$ are the eigenvalues of $g^{sigma}$. suppose $g^{sigma...
متن کاملOn graphs whose spectral radius
The structure of graphs whose largest eigenvalue is bounded by 3 2 √ 2 (≈ 2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.
متن کاملOn unicyclic graphs whose second largest eigenvalue dose not exceed 1
Connected graphs in which the number of edges equals the number of vertices are called unicyclic graphs. In this paper, all unicyclic graphs whose second largest eigenvalue does not exceed 1 have been determined. ? 2003 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2013
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.08.020